

6 GHz VLP Interference

RKF Link Budget Equation

- $I = EIRP + G_{FarField} L_{PropagationPath} L_{SpectralOverlap} L_{Polarization} L_{feed} + G_{Rx-to-VLP}$
 - I (dBW) = Interference Power from VLP (aggregate or single-entry (i.e., due to single VLP device))
 - EIRP (dBW) = VLP EIRP within VLP channel bandwidth (baseline: 14 dBm)
 - $G_{FarField}$ (dB) = VLP far field gain that includes body loss
 - L_{PropagationPath} (dB) = Propagation Path loss including Clutter loss
 - L_{SpectralOverlap} (dB) = 10*log10(spectrum overlap between VLP channel and victim channel / VLP bandwidth), also called frequency-dependent rejection.
 - L_{polarization} = Polarization Loss of 3 dB
 - L_{feed} (dB) = Feederloss of victim receiver
 - G_{Rx-to-VLP} (dBi) = Gain of victim FS Rx towards VLP based on the angle off-boresight

G_{FarField} includes body loss, but also includes antenna mismatch and polarization mismatch

- The CDF chart RKF used for antenna gain combined with body loss was based on measured data collected by Wireless Research Center of North Carolina.
- Data was measured over the full sphere surrounding test subjects, and thus any antenna mismatch is built into these measurements.
- Polarization is impacted by the body as well, so polarization mismatch is built into these measurements. Using additional polarization mismatch would be double counting.

G_{FarField} is based on measured data

Figure 26 - Gain CDF of DUT1 for all 6 Subjects and 6 Positions From Wireless Research Center of North Carolina

- Measured over the full sphere surrounding subject wearing a VLP device
- Measurement of this data captures several different loss factors and combines into a single CDF
 - Captures RLAN antenna gain
 - Captures body loss
 - Captures polarization mismatch

L_{PropagationPath} – for real-world examples

- RKF uses WINNER II, including built-in clutter loss for distances between 30m and 1km.
- Real-world examples show scenarios where there is no clutter, no obstructions, no terrain.
- Free space path loss is appropriate in these examples.

Constant variables in link budget

- L_{SpectralOverlap} (dB) = 7.3 dB; For a 30 MHz FS channel, and a 160 MHz VLP channel
- L_{polarization} = 0 dB; As previously noted, polarization mismatch is built into G_{FarField}
- L_{feed} = 2 dB; same as used by RKF

Real-world conditions show VLP interference

	RKF	KAN32	КАХ33	KBC41	KBI49	KCA76	Units	Formula
RLAN Bandwidth	160	160	160	160	160	160	MHz	a
Maximum RLAN Power	14	14	14	14	14	14	dBm	b
Body Loss / RLAN Antenna Mismatch	CDF from Wireless Research Center of North Carolina						dB	c
Feeder/System Loss	-2	-2	-2	-2	-2	-2	dB	d
Polarization Mismatch	-3	-3 Included in CDF from Wireless Research Center of North Carolina						e
FS Antenna Height AGL		26.8	39.6	21.3	38.1	28.9	m	g
RLAN Device Height AGL		1	1	1	1	1	m	h
FS-RLAN Distance (slant)		103.3	113.7	102.0	118.0	79.1	m	i
Degrees to FS		15	20	10	30	20	degrees	j
FS Antenna Model		Western Electric KF15676	Gabriel USR 10P	Western Electric KS1567	76 Andrew UHX8-59H	CommScope UHX10-59K		
FS Gain		-9.5	-9	-2.5	-4.7	-9	dB	k
Prop. Loss (FSPL)		88.4	89.6	88.4	89.9	86.2	dB	l = 32.45 + 20*log(f) + 20*log(i/1000)
Bandwidth Adjustment 160/30 MHz	7.3	7.3	7.3	7.3	7.3	7.3	dB	m = 10*log(160/30)
RLAN Interference at FS Receiver (30 MHz)		-93.2	-93.9	-86.2	-89.8	-90.5	dBm	n = b + c +d + e + k - l - m
FS Noise Figure	5.0	3.0	3.0	3.0	3.0	3.0	dB	0
FS System Noise Floor in 30 MHz	-94.2	-96.2	-96.2	-96.2	-96.2	-96.2	dBm	p = -174 + o + 10*log(3000000)
TOTAL I/N		3.0	2.3	10.1	6.4	5.8	dB	q = n - p
Interference Exceedance		9.0	8.3	16.1	12.4	11.8	dB	r = q + 6

Notes:

1. Four of the five sites have ultra high performance FS antennas. FS sites with standard performance antennas would experience higher interference.

2. The I/N calculated in this table is for a VLP device that is not body worn – full distributions that include the body loss CDF are shown in slides below.

Unlicensed VLP devices will cause interference at all of the sites assessed by CTIA.

KAN32

Blue line: microwave antenna centerline

View of site from interfering location

- Example: Red line is 103 m to a pedestrian with a Personal Area Network (clearly no clutter, foliage, or terrain obstructions)
- I/N = -6 dB threshold exceeded with 28% probability; I/N = 0 dB threshold exceeded with 8% probability

CDF for KAN32

KAX33

View of site from interfering location

- Blue line: microwave antenna centerline
- Example: Red line is 114 m to a pedestrian with a PAN (clearly no clutter, foliage, or terrain obstructions)
- I/N = -6 dB threshold exceeded with 26% probability; I/N = 0 dB threshold exceeded with 7% probability

CDF for KAX33

KBC41

View of site from interfering location

- Blue line: microwave antenna centerline
- Example: Red line is 102 meters to a pedestrian using a PAN (clearly no clutter, foliage, or terrain obstructions)
- I/N = -6 dB threshold exceeded with 57% probability; I/N = 0 dB threshold exceeded with 32% probability

CDF for KBC41

KBI49

Blue line: microwave antenna centerline

View of site from interfering location

- Example: Red line is 118 meters to a pedestrian using a PAN (clearly no clutter, foliage, or terrain obstructions)
- I/N = -6 dB threshold exceeded with 42% probability; 0 dB threshold exceeded with 17% probability

CDF for KBI49

• Blue line: microwave antenna centerline

View of site from interfering location

- Example: Red line is 79 meters to a pedestrian using PAN (clearly no clutter, foliage, or terrain obstructions)
- I/N = -6 dB threshold exceeded with 38% probability; I/N = 0 dB threshold exceeded with 15% probability

CDF for KCA76

RLANs admit VLP will consistently require 14 dBm EIRP

- The RLAN filing on 03182020, advocating for a VLP EIRP of 14 dBm, admits that this power level will be required regularly.
- This clearly contradicts the RLAN claims in interference studies that power control will greatly reducing interference to incumbents.
- For example, a device in the right or left back pocket, experiencing considerable body loss to the glasses, can have a line-of-sight condition to an FS receiver as in the situations we assess above.

VLP interference to FS receiver in line-of-sight

RLAN March 18, 2020 Filing: VLP Losses Require 14 dBM

Figure 3:

Example of Raw Data: Subject A – Signal Loss Data for 6 positions

Left Waist

Right Waist

Left Back Pocket

Right Back Pocket

Back Pack

Device in right rear pocket

Single-emitter link budget analysis is appropriate

- RKF's Monte Carlo analysis states that most cases where interference threshold is exceeded is caused by a single device.
- Monte Carlo techniques are more suited to situations with a large number of inputs, such as an aggregation of interference from multiple devices.
- The single link budget for these five examples shows that interference from the single device is likely.
- If the Monte Carlo analysis predicts levels of aggregate interference less than levels from a single interfering device in these real-world examples, then the input assumptions used in the Monte Carlo analyses are probably skewed to attempt to minimize predicted interference levels.

Summary

- RLAN stakeholders used overly optimistic assumptions regarding VLP transmit power, which will result in significant interference to Fixed Service incumbents.
- All five locations assessed by CTIA would experience interference levels well above the threshold of -6 dB I/N.
- VLP devices could readily be equipped with an AFC managed through their controlling device or smartphone – and adequately protect incumbents.
- If the RLAN companies are unwilling to take the simple precaution of an AFC, then VLP must be limited to a maximum transmit power of 10 dBm EIRP.